CanonNet

Institution Name
Conferance name and year

*Indicates Equal Contribution

Aliquam vitae elit ullamcorper tellus egestas pellentesque. Ut lacus tellus, maximus vel lectus at, placerat pretium mi. Maecenas dignissim tincidunt vestibulum. Sed consequat hendrerit nisl ut maximus.

Abstract

Point cloud processing poses two fundamental challenges: establishing consistent point ordering and effectively learning fine-grained geometric features. Current architectures rely on complex operations that limit expressivity while struggling to capture detailed surface geometry. We present CanonNet, a lightweight neural network composed of two complementary components: (1) a preprocessing pipeline that creates a canonical point ordering and orientation, and (2) a geometric learning framework where networks learn from synthetic surfaces with precise curvature values. This modular approach eliminates the need for complex transformation-invariant architectures while effectively capturing local geometric properties. Our experiments demonstrate state-of-the-art performance in curvature estimation and competitive results in geometric descriptor tasks with significantly fewer parameters (\textbf{100X}) than comparable methods. CanonNet's efficiency makes it particularly suitable for real-world applications where computational resources are limited, demonstrating that mathematical preprocessing can effectively complement neural architectures for point cloud analysis

BibTeX

BibTex Code Here